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Distribution of the partition function
modulo m

By KEN ONO*

1. Introduction and statement of results

A partition of a positive integer n is any nonincreasing sequence of pos-
itive integers whose sum is n. Let p(n) denote the number of partitions of n
(as usual, we adopt the convention that p(0) = 1 and p(a) = 0 if a & N).
Ramanujan proved for every nonnegative integer n that

p(dbn+4) =0 (mod 5),
p(Tmn+5) =0 (mod 7),
p(11n+6) =0 (mod 11),

and he conjectured further such congruences modulo arbitrary powers of 5, 7,
and 11. Although the work of A. O. L. Atkin and G. N. Watson settled these
conjectures many years ago, the congruences have continued to attract much
attention. For example, subsequent works by G. Andrews, A. O. L. Atkin,
F. Garvan, D. Kim, D. Stanton, and H. P. F. Swinnerton-Dyer ([An-G], [G],
[G-K-S], [At-Sw2]), in the spirit of F. Dyson, have gone a long way towards
providing combinatorial and physical explanations for their existence.

Ramanujan [Ra, p. xix| already observed that his congruences were quite
special. For instance, he proclaimed that

“It appears that there are no equally simple properties for any moduli
involving primes other than these three (i.e. m =5,7,11).”

Although there is no question that congruences of the form p(an +b) =0
(mod m) are rare (see recent works by the author ([K-Ol], [O1], [02])), the
question of whether there are many such congruences has been the subject of
debate. In the 1960’s, Atkin and O’Brien ([At], [At-Sw1], [At-Ob]) uncovered
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further congruences such as
(1) p(11%-13n +237) =0 (mod 13).

However, no further congruences have been found and proven since.

In a related direction, P. Erdés and A. Ivié ([E-I]) conjectured that there
are infinitely many primes m which divide some value of the partition function,
and Erdés made the following stronger conjecture [Go], [I].

CONJECTURE (Erd6s). If m is prime, then there is at least one nonneg-
ative integer n,, for which

p(nm) =0 (mod m).

A. Schinzel (see [E-I] for the proof) proved the Erdés-Ivié conjecture using
the Hardy-Ramanujan-Rademacher asymptotic formula for p(n), and more
recently Schinzel and E. Wirsing [Sc-W] have obtained a quantitative result in
the direction of Erdds’ stronger conjecture. They have shown that the number
of primes m < X for which Erdos’ conjecture is true is > loglog X.

Here we present a uniform and systematic approach which settles the
debate regarding the existence of further congruences, and yields Erdos’ con-
jecture as an immediate corollary.

THEOREM 1. Let m > 5 be prime and let k be a positive integer. A
positive proportion of the primes £ have the property that

mken +1
p —

51 )EO (mod m)

for every nonnegative integer n coprime to £.

In view of work of S. Ahlgren [A], J.-L. Nicolas, I. Z. Ruzsa, A. Sarkozy
[Ni-R-Sa] and J-P. Serre [S] for m = 2, the fact that p(3) = 3, and Theorem 1,
we obtain:

COROLLARY 2. Erdos conjecture is true for every prime m. Moreover, if
m # 3 is prime, then

D x 0 1 VX ifm=2,
HOSn<X s pn=0 (modm) >, {0 70

Surprisingly, it is not known whether there are infinitely many n for which
p(n) =0 (mod 3).

As an example, we shall see that £ = 59 satisfies the conclusion of Theorem
1 when m = 13 and & = 1. In this case, by considering integers in the
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arithmetic progression » = 1 (mod 24 - 59), we find for every nonnegative
integer n that

(2) p(59" - 13n +111247) =0 (mod 13).

Our results are also useful in attacking a famous conjecture of M. Newman
[N1].

CONJECTURE (M. Newman). If m is an integer, then for every residue
class v (mod m) there are infinitely many nonnegative integers n for which
p(n) =r (mod m).

Works by Atkin, Newman, and O. Kolberg ([At], [N1], [K]) have verified
the conjecture for m = 2,5,7,11 and 13 (in fact, the case where m = 11 is not
proved in these papers, but one may easily modify the arguments to obtain
this case). Here we present a result which, in principle, may be used to verify
Newman’s conjecture for every remaining prime m # 3.

We shall call a prime m > 5 good if for every r (mod m) there is a non-

negative integer n, for which mn, = —1 (mod 24) and
1
p <%> =r (mod m).

THEOREM 3. If m > 5 is a good prime, then Newman’s conjecture is true
for m. Moreover, for each residue class r (mod m) we have

VX/logX ifl1<r<m-—1,
#{0<n<X : pn)=r (modm)} >, .
X if r=0.
Although it appears likely that every prime m > 13 is good, proving that
a prime m is good involves a substantial computation, and this computation
becomes rapidly infeasible as the size of m grows. The author is indebted to

J. Haglund and C. Haynal who wrote efficient computer code to attack this
problem. As a result, we have the following.

COROLLARY 4. Newman’s conjecture is true for every prime m < 1000
with the possible exception of m = 3.

We also uncover surprising “periodic” relations for certain values of the
partition function mod m. In particular, we prove that if m > 5 is prime, then
the sequence of generating functions

mk’n
®  Feka= X p("E e edm)
n>0

mFn=—1 (mod 24)
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(q := €2™* throughout) is eventually periodic in k. We call these periods
“Ramanujan cycles.” Their existence implies the next result.

THEOREM 5. If m > 5 is prime, then there are integers 0 < N(m) <
48(m® —2m — 1) and 1 < P(m) < 48(m3 — 2m — 1) such that for every
i > N(m) we have

min + 1 _ mEPm+i 4 q (mod m)
P\7oq ) =P 24

for every nonnegative integer n.

For each class r (mod m) one obtains explicit sequences of integers ny
such that p(ng) = r (mod m) for all k. This is the subject of Corollaries 9
through 12 below. For example, taking n = 0 in Corollary 12 shows that for
every nonnegative integer k

(4)

232k+1 +1
P 24

232k+3 +1

>E5k (mod 23) and p< 51

> = 551 (mod 23).

Similarly it is easy to show that

(5) 51

) (1297 .232k+1 4 q

1 .9 2k+-2 1
p( 567 23 + ) =0 (mod 23) and

51 > =0 (mod 23).

Congruences of this sort mod 13 were previously discovered by Ramanujan and
found by M. Newman [N2]. In fact, this paper was inspired by such entries in
Ramanujan’s lost manuscript on p(n) and 7(n) (see [B-O]).

A priori, one knows that the generating functions F(m,k; z) are the re-
ductions mod m of weight —1/2 nonholomorphic modular forms, and as such
lie in infinite dimensional FF,,,-vector spaces. This infinitude has been the main
obstacle in obtaining results for the partition function mod m. In Section 3 we
shall prove a theorem (see Theorem 8) which establishes that the F'(m,k; z)
are the reductions mod m of half-integral weight cusp forms lying in one of two
spaces with Nebentypus. Hence, there are only finitely many possibilities for
each F'(m,k;z). This is the main observation which underlies all of the results
in this paper. We then prove Theorems 1 and 3 by employing the Shimura cor-
respondence and a theorem of Serre about Galois representations. In Section 4
we present detailed examples for 5 < m < 23.
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2. Preliminaries

We begin by defining operators U and V' which act on formal power series.
If M and j are positive integers, then

(6) > a(n)g™ | | UM) = a(Mn)q",
n>0 n>0
(7) D a(n)g" || V() =Y an)g™
n>0 n>0
We recall that Dedekind’s eta-function is defined by
(8) n(z)=q¢"> [
n=1

and that Ramanujan’s Delta-function is

(9) A(z) = n*(2),
the unique normalized weight 12 cusp form for SLy(Z). If m > 5 is prime and
k is a positive integer, then define a(m, k,n) by

3 L (AP ) | Tmb) V(2e)
(10) ;a(n% k,n)q" = 7 (24) (mod m),

where 6(m, k) := (m?* —1)/24. Recall the definition (3) of F(m,k;z).

THEOREM 6. If m > 5 is prime and k is a positive integer, then
o
F(m,k;z) = Za(m, k,n)q" (mod m).
n=0

Proof. We begin by recalling that Euler’s generating function for p(n) is
given by the infinite product

> pn)g =] a _1

n=0 n=1

Using this fact, one easily finds that

={§jp<n e g }|U<m’f>
n=0 n=1

> 4 8mk)+B(m.k) O
Z (mn+ BmR)g" e [T =)™,
=0 n
where 1 < B(m, k) < mF — 1 satisfies 248(m, k) = 1 (mod mF).

7™ (mk2)

n(2)
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m2k

Since (1 — X™")™" = (1 — X)™" (mod m), we find that

5(m,k)+B(m.k) d(m,k) k
Zp mFn + B(m, k))g"" o A — (2) | U(mk) (mod m).

—mk

Replacing ¢ by ¢4 and multiplying through by ¢ one obtains

o0

Zp (mFn + B(m, k))q 2Ant = Za(m,k,n)q" (mod m).

n=0 n=0

24ﬁ(m k) 1

It is easy to see that

24B(m k) 1 mkn +1
ZP m*n + B(m, k))q 2t = j% <T> ¢". O
n=0 n>0

mFn=—1 (mod 24)

We conclude this section with the following elementary result which estab-
lishes that the F'(m, k;z) form an inductive sequence generated by the action
of the U(m) operator.

PROPOSITION 7. If m > 5 is prime and k is a positive integer, then

F(m,k+1;z) = F(m,k;z) | U(m) (mod m).

Proof. Using definition of the F'(m, k; z) and the convention that p(a) = 0

for o ¢ Z, one finds that
mfn+1Y\
Z p <T> q" | U(m)

n>0
mFn=—1 (mod 24)

p Y1 q
n>0
mFtin=—1 (mod 24)

= F(m,k+1;2) (mod m). O

F(m,k;2) | U(m)

3. Proof of the results

First we recall some notation. Suppose that w € %Z, and that N is a
positive integer (with 4 | N if w ¢ Z). Let Sy, (I'o(N),x) denote the space
of weight w cusp forms with respect to the congruence subgroup I'g(N) and
with Nebentypus character xy. Moreover, if £ is prime, then let Sy, (T'o(NV), x)¢
denote the Fy-vector space of the reductions mod ¢ of the g-expansions of forms
in Sy (To(N), x) with rational integer coefficients.



DISTRIBUTION OF THE PARTITION FUNCTION MODULO m 299

THEOREM 8. If m > 5 is prime, then for every positive integer k we have
F(m,k;2) € Sp2_pi (To(576m), xXks )m,
2

where x is the nontrivial quadratic character with conductor 12, and X, is the
usual Kronecker character for Q(y/m).

Proof. The U(m) operator defines a map (see [S-St, Lemma 1])
U(m) : S>\+%(F0(4Nm),y) — S)\+%(F0(4Nm),1/xm).
Therefore, in view of Proposition 7 it suffices to prove that
F(m,1;z) € S% (To(576m), X)m-
If d = 0 (mod 4), then it is well known that the space of cusp forms
Sa(Tp(1)) has a basis of the form
{A<z>jE4<z>%-3j BETE [1%} }

Since the Hecke operator T,, is the same as the U(m) operator on
S125(m,1)(T'0(1))m, we know that

A (2) | U(m) = ZajA(z)jE4(z)35(m’1)_3j (mod m),
Jj>1
where the a; € IF,;,. However, since

Aé(m,l)(z) =D ...

it is easy to see that
A (z) [Um) = Y Hn)g"
n>ng

where ng > §(m, 1)/m. However, since §(m, 1) € Z, one can easily deduce that
ng > m/24.

The only basis forms in A%™D(z) | U(m) (mod m) are those
A (2)E4(2)30m D=3 where j > m/24. This implies that

(A(2)°mD | U(m)) | V(24)
0™ (24z)

is a cusp form. Since (A(z)‘s(mvl) | U(m)) | V(24) is the reduction mod m of
m2—1

a weight ™5— cusp form with respect to I'g(24), and 7(24z) is a weight 1/2
cusp form with respect to I'g(576) with character x, the result follows. O

Now we recall an important result due to Serre [S, 6.4].
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THEOREM (Serre). The set of primes £ = —1 (mod N) for which
f1T; =0 (modm)

for every f(z) € Sk(To(N), V) has positive density. Here Ty denotes the usual
Hecke operator of index £ acting on Sk(Iog(N),v).

Proof of Theorem 1. If F(m,k;z) = 0 (mod m), then the conclusion of
Theorem 1 holds for every prime ¢. Hence, we may assume that F(m,k;z)
# 0 (mod m). By Theorem 8, we know that each F(m,k;z) belongs to
S 21 (To(576m), xx%~1),. Therefore each F(m, k; 2) is the reduction mod

m of2a half-integral weight cusp form.

Now we briefly recall essential facts about the “Shimura correspondence”
([Sh]), a family of maps which send modular of forms of half-integral weight
to those of integer weight. Although Shimura’s original theorem was stated
for half-integral weight eigenforms, the generalization we describe here follows
from subsequent works by Cipra and Niwa [Ci], [Ni]. Suppose that f(z) =
Yool b(n)g" € S>\+%(F0(4N),1/1) is a cusp form where A > 2. If ¢ is any

square-free integer, then define A;(n) by

[e'¢) & 2
Z A;(:L) = L(s — A+ Lx2 xe) - Z btn ).
n=1

ns

[y

n=

Here x_1 (resp. x:) is the Kronecker character for Q(i) (resp. Q(v/t)). These
numbers A;(n) define the Fourier expansion of Si(f(z)), a cusp form

SUF(@) =3 An)g”
n=1

in So)(To(4N),4?). Moreover, the Shimura correspondence S; commutes with
the Hecke algebra. In other words, if p {4V is prime, then

Si(f |T(P?) = Si(f) | Tp.

Here T, (resp. T(p*)) denotes the usual Hecke operator acting on the space
S2A(PO(4N)7 1/}2) (resp. S)\J,_% (FO(4N)7 1/}))

Therefore, for every square-free integer ¢t we have that the image
S;(F(m, k; z)) under the t*" Shimura correspondence is the reduction mod m
of an integer weight form in S,,2_,,_(To(576m), Xtriv). Now let S(m) denote
the set of primes { = —1 (mod 576m) for which

G|T;=0 (modm)

for every G € S,,2_,—2(L0(576m), Xtriv)m- By Serre’s theorem, the set S(m)
contains a positive proportion of the primes.
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By the commutativity of the correspondence, if ¢ € S(m), then we find
that
F(m,k;2) | T(#*) =0 (mod m),

where T'(£?) is the Hecke operator of index ¢2 on S,2_,,_, (To(576m), xx%1).
In particular (see [Sh]), if f = > ap(n)¢™ € S/\+%(]\27, X¢) is a half-integral

weight form, then

[e.e]

1
a1 =3 (a5 P

n=0
+ xf(€2)€2’\_1af(n/€2)> q".

Therefore, if £ € S(m) and n is a positive integer which is coprime to ¢, then,
by replacing n by nf, we have

m2—m—2
m2—m—4

a(m, k,nl*)+xx51(0) (Ljns 42 -a(m,k,nl) =0 (mod m).

Since ("TZ) = 0, by Theorem 6 we find that

mkfn +1
p —_—

54 > = a(m, k,£3>n) =0 (mod m). O

Remark. Although Theorem 1 is a general result guaranteeing the ex-
istence of congruences, there are other congruences which follow from other
similar arguments based on (11).

For example, suppose that £ is a prime for which

F(m,k;2) | T(¢?) = A\(¢)F(m, k;z) (mod m)

for some A(¢) € F). If n is a nonnegative integer for which ¢2 { n, then (11)
becomes

m2—m—2

alim. k. § A6) k()

m2—m—4

= a(m, k,nf*) (mod m).

Hence, if it turns out that

m27m74

M) =+ = (mod m),

then there are arithmetic progressions of integers n for which

mkZn +1

a(m, k,n€2) =p < 51

) =0 (modm).
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Although we have not conducted a thorough search, it is almost certain that
many such congruences exist.

Proof of Theorem 3. By the proof of Theorem 6, recall that

mn+1Y\ ,
Fonti = % () "€ Su s (Tu(570m), 0
n>0,

mn=—1 (mod 24)

Since m is good, for each 0 < r < m — 1 let n, be a fixed nonnegative integer
for which mn, = —1 (mod 24) and

mn, + 1
p —_—

54 )Er (mod m).

Let M,, be the set of primes p for which p | n, for some r, and define &,, by
Gy 1= H p.
pGMm

Obviously, the form F'(m,1;z) also lies in S,,2_,,_; (To(576m&,,, X)m. There-

2
fore, by Serre’s theorem and the commutativity of the Shimura correspondence,

a positive proportion of the primes / = —1 (mod 576m&,,) have the property
that
F(m,1;2) | T({*) =0 (mod m).

By (11), for all but finitely many such ¢ we have for each r that

m2 —m—2

mn 0%+ 1 (=) =2 n,\ ,m2m-a (mn,+1\ _
However, since £ = —1 (mod m) this implies that
mn L2 +1Y _ (-1)" m2om2 (',
) p (M5 =0 () 0 () o m)
If n, =[], pi where the p; are prime, then
n, o _z
() -1 (3)
Since n, is odd, £ = 3 (mod 4), and £ = —1 (mod p;), we find by quadratic
reciprocity that
(%) -G)E)
4 bi pi
SENOR
b Di

m2—m—2
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Therefore, for all but finitely many such ¢ congruence (12) reduces to

e <%“) = x(0) (ﬁ

Hence for every sufficiently large such ¢, the m values p (%ﬁ“) are distinct

>(—1)WT (mod m).

and represent each residue class mod m.

To complete the proof, it suffices to notice that the number of such primes
¢ < X, by Serre’s theorem again, is > X/log X. In view of (13), this immedi-
ately yields the v X /log X estimate. The estimate when r = 0 follows easily
from Theorem 1. O

Proof of Theorem 5. Since F(m,k;z) is in S ,2_,,_1 (To(576m), xX* 1),

it follows that each F'(m,k;z) lies in one of two ﬁniie—dimensional F,,-vector
spaces. The result now follows immediately from (3), Theorem 6, Proposition
7, and well-known upper bounds for the dimensions of spaces of cusp forms
(see [C-O]). O

4. Examples

In this section we list the Ramanujan cycles for the generating functions
F(m,k;z) when 5 < m < 23. Although we have proven that each F(m,k;z) €
S 21 (To(576m), X X%~ ), in these examples it turns out that they all are

2

congruent mod m to forms of smaller weight.

Cases where m = 5,7, and 11. In view of the Ramanujan congruences
mod 5,7, and 11, it is immediate that for every positive integer k we have

F(5,k;2) =0 (mod 5),

F(7,k;z) =0 (mod 7),
F(11,k;2) =0 (mod 11).

Therefore, these Ramanujan cycles are degenerate.

Case where m = 13. By [Gr-O, Prop. 4] it is known that
A"(2) | U(13) = 11A(2)  (mod 13).
Therefore by (10) and Theorem 6 it turns out that
F(13,1;2) = 11¢" +9¢% +--- = 119! (242)  (mod 13).

Using a theorem of Sturm [St, Th. 1], one easily verifies with a finite compu-
tation that
F(13,1;2) | T(59%)

0 (mod 13).
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By the proof of Theorem 1, we find that every nonnegative integer n = 1
(mod 24) that is coprime to 59 has the property that

(13-593n+1
p —_—

o > =0 (mod 13).

Congruence (2) follows immediately.
Using Sturm’s theorem again, one readily verifies that

nt(242) | U(13) = 84*3(242) (mod 13),
7%3(242) | U(13) = 4n'1(242) (mod 13).

By Proposition 7 this implies that
F(13,2;2) = 10n*3(242)  (mod 13),
and more generally it implies that for every nonnegative integer k

(14) F(13,2k + 1;2) = 11 - 6Fp*(242) (mod 13),
(15) F(13,2k +2;2) = 10 - 6*?*(242) (mod 13).
These two congruences appear in Ramanujan’s unpublished manuscript on

7(n) and p(n), and their presence in large part inspired this entire work. From
(14) and (15) we obtain the following easy corollary.

COROLLARY 9. Define integers a(n) and b(n) by

S amg” = [[ (-,
n=0 n=1
> bn)g" =T - ">
n=0 n=1

If k and n are nonnegative integers, then
132K+ (24n + 11) + 1
b 24
<132k+2(24n +23)+1
p

> =11-6"-a(n) (mod 13),

od > =10-6"-b(n) (mod 13).

Case where m = 17. By [Gr-O, Prop. 4], it is known that
A2(2) | U(17) = TE4(2)A(z)  (mod 17)

where Fy(z) = 14 240% .7, 03(n)¢™ is the usual weight 4 Eisenstein series.
Therefore by (10) it turns out that

F(17,1;2) =7¢" +16¢% + - = T9"(242)E4(242)  (mod 17).
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Again using Sturm’s theorem one easily verifies that
07 (242)F4(242) | U(17) = T*3(242) E4(242) (mod 17),
n?3(242)Eq(242) | U(17) = 131" (242) E4(242) (mod 17).
By Proposition 7 this implies that for every nonnegative integer k
F(17,2k + 1;2) = 7- 67 (242) E4(242) (mod 17),
F(17,2k + 2;2) = 15 - 6F*3(242) E4(242) (mod 17).
As an immediate corollary we obtain:

COROLLARY 10. Define integers c(n) and d(n) by

e} [e.e]

> )" = Ea(2) - [T =",
n=1

> d(n)g" == Eu(2)- [J(1—q")

n=0 n=1

If k and n are nonnegative integers, then
(172k+1(24n +7)+1
p

24

172k42(24n + 23) + 1
P 24

) =7-6"-¢(n) (mod 17),

=15-6" - d(n) (mod 17).

Case where m = 19. Using [Gr-O, Prop. 4], and arguing as above it turns
out that for every nonnegative integer k

F(19,2k + 1;2) = 5 - 108°(242) Fs(242) (mod 19),
F(19,2k + 2; 2) = 11 - 10"1?%(242) E5(242) (mod 19).

Here Eg(z) = 1—504) ">, 05(n)q"™ is the usual weight 6 Eisenstein series. As
an immediate corollary we obtain:

COROLLARY 11. Define integers e(n) and f(n) by

> e(n)g" = Es(z)- [J(1—¢")?,
n=0 n=1

> fn)g" = Ee(2)- [J(1 - a")
n=0 n=1

If k and n are nonnegative integers, then
<192k+1(24n +5)+1
p

24

192k42(24n + 23) + 1
P 24

> =5-10" - e(n) (mod 19),

> =11-10% - f(n) (mod 19).
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Case where m = 23. Using [Gr-O, Prop. 4], and arguing as above we have

for every nonnegative integer k

F(23,2k + 1; 2) = 5°(242) E4(242) Eg(242) (mod 23),
F(23,2k + 2; 2) = 58 T1%(242) E4(242) Eg (242) (mod 23).

COROLLARY 12. Define integers g(n) and h(n) by

S gln)a" = Ea()Bo(=) - [[ (01— ¢,
n=0 n=1

> h(n)q" = Es(2)Ee(2) - [[(1 - ¢")*.
n=0

n=1

If k and n are nonnegative integers, then

= k .
od = 5" g(n) (mod 23),

2326+2(24n + 23) + 1
P 24

) <232k+1(24n +1) + 1>

) = 5F1 . h(n) (mod 23).
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