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Distribution of the partition function

modulo m

By Ken Ono*

1. Introduction and statement of results

A partition of a positive integer n is any nonincreasing sequence of pos-

itive integers whose sum is n. Let p(n) denote the number of partitions of n

(as usual, we adopt the convention that p(0) = 1 and p(α) = 0 if α 6∈ N).

Ramanujan proved for every nonnegative integer n that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

and he conjectured further such congruences modulo arbitrary powers of 5, 7,

and 11. Although the work of A. O. L. Atkin and G. N. Watson settled these

conjectures many years ago, the congruences have continued to attract much

attention. For example, subsequent works by G. Andrews, A. O. L. Atkin,

F. Garvan, D. Kim, D. Stanton, and H. P. F. Swinnerton-Dyer ([An-G], [G],

[G-K-S], [At-Sw2]), in the spirit of F. Dyson, have gone a long way towards

providing combinatorial and physical explanations for their existence.

Ramanujan [Ra, p. xix] already observed that his congruences were quite

special. For instance, he proclaimed that

“It appears that there are no equally simple properties for any moduli

involving primes other than these three (i.e. m = 5, 7, 11).”

Although there is no question that congruences of the form p(an+ b) ≡ 0

(mod m) are rare (see recent works by the author ([K-Ol], [O1], [O2])), the

question of whether there are many such congruences has been the subject of

debate. In the 1960’s, Atkin and O’Brien ([At], [At-Sw1], [At-Ob]) uncovered
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further congruences such as

(1) p(113 · 13n + 237) ≡ 0 (mod 13).

However, no further congruences have been found and proven since.

In a related direction, P. Erdös and A. Ivić ([E-I]) conjectured that there

are infinitely many primes m which divide some value of the partition function,

and Erdös made the following stronger conjecture [Go], [I].

Conjecture (Erdös). If m is prime, then there is at least one nonneg-

ative integer nm for which

p(nm) ≡ 0 (mod m).

A. Schinzel (see [E-I] for the proof) proved the Erdös-Ivić conjecture using

the Hardy-Ramanujan-Rademacher asymptotic formula for p(n), and more

recently Schinzel and E. Wirsing [Sc-W] have obtained a quantitative result in

the direction of Erdös’ stronger conjecture. They have shown that the number

of primes m < X for which Erdös’ conjecture is true is ≫ log logX.

Here we present a uniform and systematic approach which settles the

debate regarding the existence of further congruences, and yields Erdös’ con-

jecture as an immediate corollary.

Theorem 1. Let m ≥ 5 be prime and let k be a positive integer. A

positive proportion of the primes ℓ have the property that

p

(

mkℓ3n+ 1

24

)

≡ 0 (mod m)

for every nonnegative integer n coprime to ℓ.

In view of work of S. Ahlgren [A], J.-L. Nicolas, I. Z. Ruzsa, A. Sárközy

[Ni-R-Sa] and J-P. Serre [S] for m = 2, the fact that p(3) = 3, and Theorem 1,

we obtain:

Corollary 2. Erdös’ conjecture is true for every prime m. Moreover, if

m 6= 3 is prime, then

#{0 ≤ n ≤ X : p(n) ≡ 0 (mod m)} ≫m

{

√
X if m = 2,

X if m ≥ 5.

Surprisingly, it is not known whether there are infinitely many n for which

p(n) ≡ 0 (mod 3).

As an example, we shall see that ℓ = 59 satisfies the conclusion of Theorem

1 when m = 13 and k = 1. In this case, by considering integers in the
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arithmetic progression r ≡ 1 (mod 24 · 59), we find for every nonnegative

integer n that

(2) p(594 · 13n + 111247) ≡ 0 (mod 13).

Our results are also useful in attacking a famous conjecture of M. Newman

[N1].

Conjecture (M. Newman). If m is an integer, then for every residue

class r (mod m) there are infinitely many nonnegative integers n for which

p(n) ≡ r (mod m).

Works by Atkin, Newman, and O. Kolberg ([At], [N1], [K]) have verified

the conjecture for m = 2, 5, 7, 11 and 13 (in fact, the case where m = 11 is not

proved in these papers, but one may easily modify the arguments to obtain

this case). Here we present a result which, in principle, may be used to verify

Newman’s conjecture for every remaining prime m 6= 3.

We shall call a prime m ≥ 5 good if for every r (mod m) there is a non-

negative integer nr for which mnr ≡ −1 (mod 24) and

p

(

mnr + 1

24

)

≡ r (mod m).

Theorem 3. If m ≥ 5 is a good prime, then Newman’s conjecture is true

for m. Moreover, for each residue class r (mod m) we have

#{0 ≤ n ≤ X : p(n) ≡ r (mod m)} ≫r,m

{

√
X/ logX if 1 ≤ r ≤ m− 1,

X if r = 0.

Although it appears likely that every prime m ≥ 13 is good, proving that

a prime m is good involves a substantial computation, and this computation

becomes rapidly infeasible as the size of m grows. The author is indebted to

J. Haglund and C. Haynal who wrote efficient computer code to attack this

problem. As a result, we have the following.

Corollary 4. Newman’s conjecture is true for every prime m < 1000

with the possible exception of m = 3.

We also uncover surprising “periodic” relations for certain values of the

partition function mod m. In particular, we prove that if m ≥ 5 is prime, then

the sequence of generating functions

(3) F (m,k; z) :=
∑

n≥0
mkn≡−1 (mod 24)

p

(

mkn+ 1

24

)

qn (mod m)
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(q := e2πiz throughout) is eventually periodic in k. We call these periods

“Ramanujan cycles.” Their existence implies the next result.

Theorem 5. If m ≥ 5 is prime, then there are integers 0 ≤ N(m) ≤
48(m3 − 2m − 1) and 1 ≤ P (m) ≤ 48(m3 − 2m − 1) such that for every

i > N(m) we have

p

(

min+ 1

24

)

≡ p

(

mP (m)+i · n+ 1

24

)

(mod m)

for every nonnegative integer n.

For each class r (mod m) one obtains explicit sequences of integers nk

such that p(nk) ≡ r (mod m) for all k. This is the subject of Corollaries 9

through 12 below. For example, taking n = 0 in Corollary 12 shows that for

every nonnegative integer k

(4)

p

(

232k+1 + 1

24

)

≡ 5k (mod 23) and p

(

232k+3 + 1

24

)

≡ 5k+1 (mod 23).

Similarly it is easy to show that

p

(

1367 · 232k+2 + 1

24

)

≡ 0 (mod 23) and(5)

p

(

1297 · 232k+1 + 1

24

)

≡ 0 (mod 23).

Congruences of this sort mod 13 were previously discovered by Ramanujan and

found by M. Newman [N2]. In fact, this paper was inspired by such entries in

Ramanujan’s lost manuscript on p(n) and τ(n) (see [B-O]).

A priori, one knows that the generating functions F (m,k; z) are the re-

ductions mod m of weight −1/2 nonholomorphic modular forms, and as such

lie in infinite dimensional Fm-vector spaces. This infinitude has been the main

obstacle in obtaining results for the partition function mod m. In Section 3 we

shall prove a theorem (see Theorem 8) which establishes that the F (m,k; z)

are the reductions mod m of half-integral weight cusp forms lying in one of two

spaces with Nebentypus. Hence, there are only finitely many possibilities for

each F (m,k; z). This is the main observation which underlies all of the results

in this paper. We then prove Theorems 1 and 3 by employing the Shimura cor-

respondence and a theorem of Serre about Galois representations. In Section 4

we present detailed examples for 5 ≤ m ≤ 23.
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2. Preliminaries

We begin by defining operators U and V which act on formal power series.

If M and j are positive integers, then




∑

n≥0

a(n)qn



 | U(M) :=
∑

n≥0

a(Mn)qn,(6)





∑

n≥0

a(n)qn



 | V (j) :=
∑

n≥0

a(n)qjn.(7)

We recall that Dedekind’s eta-function is defined by

(8) η(z) := q1/24
∞
∏

n=1

(1 − qn)

and that Ramanujan’s Delta-function is

(9) ∆(z) := η24(z),

the unique normalized weight 12 cusp form for SL2(Z). If m ≥ 5 is prime and

k is a positive integer, then define a(m,k, n) by

(10)
∞
∑

n=0

a(m,k, n)qn :=

(

∆δ(m,k)(z) | U(mk)
)

|V (24)

ηmk(24z)
(mod m),

where δ(m,k) := (m2k − 1)/24. Recall the definition (3) of F (m,k; z).

Theorem 6. If m ≥ 5 is prime and k is a positive integer, then

F (m,k; z) ≡
∞
∑

n=0

a(m,k, n)qn (mod m).

Proof. We begin by recalling that Euler’s generating function for p(n) is

given by the infinite product
∞
∑

n=0

p(n)qn :=
∞
∏

n=1

1

(1 − qn)
.

Using this fact, one easily finds that

ηmk

(mkz)

η(z)
| U(mk) =

{

∞
∑

n=0

p(n)qn+δ(m,k) ·
∞
∏

n=1

(1 − qmkn)m
k

}

| U(mk)

=

∞
∑

n=0

p(mkn+ β(m,k))q
n+

δ(m,k)+β(m,k)

mk ·
∞
∏

n=1

(1 − qn)m
k

,

where 1 ≤ β(m,k) ≤ mk − 1 satisfies 24β(m,k) ≡ 1 (mod mk).
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Since (1 −Xmk

)m
k ≡ (1 −X)m

2k

(mod m), we find that

∞
∑

n=0

p(mkn+ β(m,k))q
n+

δ(m,k)+β(m,k)

mk ≡ ∆δ(m,k)(z) | U(mk)
∏∞

n=1(1 − qn)mk
(mod m).

Replacing q by q24 and multiplying through by q−mk
one obtains

∞
∑

n=0

p(mkn+ β(m,k))q
24n+

24β(m,k)−1

mk ≡
∞
∑

n=0

a(m,k, n)qn (mod m).

It is easy to see that

∞
∑

n=0

p(mkn+ β(m,k))q
24n+

24β(m,k)−1

mk =
∑

n≥0
mkn≡−1 (mod 24)

p

(

mkn+ 1

24

)

qn.

We conclude this section with the following elementary result which estab-

lishes that the F (m,k; z) form an inductive sequence generated by the action

of the U(m) operator.

Proposition 7. If m ≥ 5 is prime and k is a positive integer, then

F (m,k + 1; z) ≡ F (m,k; z) | U(m) (mod m).

Proof. Using definition of the F (m,k; z) and the convention that p(α) = 0

for α 6∈ Z, one finds that

F (m,k; z) | U(m) ≡
∑

n≥0
mkn≡−1 (mod 24)

p

(

mkn+ 1

24

)

qn | U(m)

=
∑

n≥0
mk+1n≡−1 (mod 24)

p

(

mk+1n+ 1

24

)

qn

≡ F (m,k + 1; z) (mod m).

3. Proof of the results

First we recall some notation. Suppose that w ∈ 1
2Z, and that N is a

positive integer (with 4 | N if w 6∈ Z). Let Sw(Γ0(N), χ) denote the space

of weight w cusp forms with respect to the congruence subgroup Γ0(N) and

with Nebentypus character χ. Moreover, if ℓ is prime, then let Sw(Γ0(N), χ)ℓ
denote the Fℓ-vector space of the reductions mod ℓ of the q-expansions of forms

in Sw(Γ0(N), χ) with rational integer coefficients.
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Theorem 8. If m ≥ 5 is prime, then for every positive integer k we have

F (m,k; z) ∈ Sm2
−m−1
2

(Γ0(576m), χχk−1
m )m,

where χ is the nontrivial quadratic character with conductor 12, and χm is the

usual Kronecker character for Q(
√
m).

Proof. The U(m) operator defines a map (see [S-St, Lemma 1])

U(m) : Sλ+ 1
2
(Γ0(4Nm), ν) −→ Sλ+ 1

2
(Γ0(4Nm), νχm).

Therefore, in view of Proposition 7 it suffices to prove that

F (m, 1; z) ∈ Sm2
−m−1
2

(Γ0(576m), χ)m.

If d ≡ 0 (mod 4), then it is well known that the space of cusp forms

Sd(Γ0(1)) has a basis of the form
{

∆(z)jE4(z)
d
4
−3j : 1 ≤ j ≤

[

d

12

]}

.

Since the Hecke operator Tm is the same as the U(m) operator on

S12δ(m,1)(Γ0(1))m, we know that

∆δ(m,1)(z) | U(m) ≡
∑

j≥1

αj∆(z)jE4(z)
3δ(m,1)−3j (mod m),

where the αj ∈ Fm. However, since

∆δ(m,1)(z) = qδ(m,1) − · · · ,

it is easy to see that

∆δ(m,1)(z) | U(m) =
∑

n≥n0

t(n)qn

where n0 ≥ δ(m, 1)/m. However, since δ(m, 1) ∈ Z, one can easily deduce that

n0 > m/24.

The only basis forms in ∆δ(m,1)(z) | U(m) (mod m) are those

∆j(z)E4(z)
3δ(m,1)−3j where j > m/24. This implies that

(

∆(z)δ(m,1) | U(m)
)

| V (24)

ηm(24z)

is a cusp form. Since
(

∆(z)δ(m,1) | U(m)
)

| V (24) is the reduction mod m of

a weight m2−1
2 cusp form with respect to Γ0(24), and η(24z) is a weight 1/2

cusp form with respect to Γ0(576) with character χ, the result follows.

Now we recall an important result due to Serre [S, 6.4].
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Theorem (Serre). The set of primes ℓ ≡ −1 (mod N) for which

f | Tℓ ≡ 0 (mod m)

for every f(z) ∈ Sk(Γ0(N), ν)m has positive density. Here Tℓ denotes the usual

Hecke operator of index ℓ acting on Sk(Γ0(N), ν).

Proof of Theorem 1. If F (m,k; z) ≡ 0 (mod m), then the conclusion of

Theorem 1 holds for every prime ℓ. Hence, we may assume that F (m,k; z)

6≡ 0 (mod m). By Theorem 8, we know that each F (m,k; z) belongs to

Sm2
−m−1
2

(Γ0(576m), χχk−1
m )m. Therefore each F (m,k; z) is the reduction mod

m of a half-integral weight cusp form.

Now we briefly recall essential facts about the “Shimura correspondence”

([Sh]), a family of maps which send modular of forms of half-integral weight

to those of integer weight. Although Shimura’s original theorem was stated

for half-integral weight eigenforms, the generalization we describe here follows

from subsequent works by Cipra and Niwa [Ci], [Ni]. Suppose that f(z) =
∑∞

n=1 b(n)qn ∈ Sλ+ 1
2
(Γ0(4N), ψ) is a cusp form where λ ≥ 2. If t is any

square-free integer, then define At(n) by

∞
∑

n=1

At(n)

ns
:= L(s− λ+ 1, ψχλ

−1χt) ·
∞
∑

n=1

b(tn2)

ns
.

Here χ−1 (resp. χt) is the Kronecker character for Q(i) (resp. Q(
√
t)). These

numbers At(n) define the Fourier expansion of St(f(z)), a cusp form

St(f(z)) :=

∞
∑

n=1

At(n)qn

in S2λ(Γ0(4N), ψ2). Moreover, the Shimura correspondence St commutes with

the Hecke algebra. In other words, if p ∤ 4N is prime, then

St(f |T (p2)) = St(f) | Tp.

Here Tp (resp. T (p2)) denotes the usual Hecke operator acting on the space

S2λ(Γ0(4N), ψ2) (resp. Sλ+ 1
2
(Γ0(4N), ψ)).

Therefore, for every square-free integer t we have that the image

St(F (m,k; z)) under the tth Shimura correspondence is the reduction mod m

of an integer weight form in Sm2−m−2(Γ0(576m), χtriv). Now let S(m) denote

the set of primes ℓ ≡ −1 (mod 576m) for which

G | Tℓ ≡ 0 (mod m)

for every G ∈ Sm2−m−2(Γ0(576m), χtriv)m. By Serre’s theorem, the set S(m)

contains a positive proportion of the primes.
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By the commutativity of the correspondence, if ℓ ∈ S(m), then we find

that

F (m,k; z) | T (ℓ2) ≡ 0 (mod m),

where T (ℓ2) is the Hecke operator of index ℓ2 on Sm2
−m−1
2

(Γ0(576m), χχk−1
m ).

In particular (see [Sh]), if f =
∑

af (n)qn ∈ Sλ+ 1
2
(N,χf ) is a half-integral

weight form, then

f | T (ℓ2) :=

∞
∑

n=0

(

af (ℓ2n) + χf (ℓ)

(

(−1)λn

ℓ

)

ℓλ−1af (n)(11)

+ χf (ℓ2)ℓ2λ−1af (n/ℓ2)

)

qn.

Therefore, if ℓ ∈ S(m) and n is a positive integer which is coprime to ℓ, then,

by replacing n by nℓ, we have

a(m,k, nℓ3)+χχk−1
m (ℓ)

(

(−1)
m2

−m−2
2 nℓ

ℓ

)

·ℓm2
−m−4
2 ·a(m,k, nℓ) ≡ 0 (mod m).

Since
(

nℓ
ℓ

)

= 0, by Theorem 6 we find that

p

(

mkℓ3n+ 1

24

)

≡ a(m,k, ℓ3n) ≡ 0 (mod m).

Remark. Although Theorem 1 is a general result guaranteeing the ex-

istence of congruences, there are other congruences which follow from other

similar arguments based on (11).

For example, suppose that ℓ is a prime for which

F (m,k; z) | T (ℓ2) ≡ λ(ℓ)F (m,k; z) (mod m)

for some λ(ℓ) ∈ F×
m. If n is a nonnegative integer for which ℓ2 ∤ n, then (11)

becomes

a(m,k, n)







λ(ℓ) − χχk−1
m (ℓ)

(

(−1)
m2

−m−2
2 n

ℓ

)

ℓ
m2

−m−4
2







≡ a(m,k, nℓ2) (mod m).

Hence, if it turns out that

λ(ℓ) ≡ ±ℓm2
−m−4
2 (mod m),

then there are arithmetic progressions of integers n for which

a(m,k, nℓ2) ≡ p

(

mkℓ2n+ 1

24

)

≡ 0 (mod m).
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Although we have not conducted a thorough search, it is almost certain that

many such congruences exist.

Proof of Theorem 3. By the proof of Theorem 6, recall that

F (m, 1; z) =
∑

n≥0,
mn≡−1 (mod 24)

p

(

mn+ 1

24

)

qn ∈ Sm2
−m−1
2

(Γ0(576m), χ)m.

Since m is good, for each 0 ≤ r ≤ m− 1 let nr be a fixed nonnegative integer

for which mnr ≡ −1 (mod 24) and

p

(

mnr + 1

24

)

≡ r (mod m).

Let Mm be the set of primes p for which p | nr for some r, and define Sm by

Sm :=
∏

p∈Mm

p.

Obviously, the form F (m, 1; z) also lies in Sm2
−m−1
2

(Γ0(576mSm, χ)m. There-

fore, by Serre’s theorem and the commutativity of the Shimura correspondence,

a positive proportion of the primes ℓ ≡ −1 (mod 576mSm) have the property

that

F (m, 1; z) | T (ℓ2) ≡ 0 (mod m).

By (11), for all but finitely many such ℓ we have for each r that

p

(

mnrℓ
2 + 1

24

)

+χ(ℓ)

(

(−1)
m2

−m−2
2 nr

ℓ

)

ℓ
m2

−m−4
2 p

(

mnr + 1

24

)

≡ 0 (mod m).

However, since ℓ ≡ −1 (mod m) this implies that

(12) p

(

mnrℓ
2 + 1

24

)

≡ χ(ℓ)

(

(−1)
m2

−m−2
2

ℓ

)

(−1)
m2

−m−2
2

(

nr

ℓ

)

r (mod m).

If nr =
∏

i pi where the pi are prime, then
(

nr

ℓ

)

:=
∏

i

(

pi

ℓ

)

.

Since nr is odd, ℓ ≡ 3 (mod 4), and ℓ ≡ −1 (mod pi), we find by quadratic

reciprocity that
(

pi

ℓ

)

=

(

ℓ

pi

)(−1

pi

)

=

(−ℓ
pi

)

=

(

1

pi

)

= 1.
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Therefore, for all but finitely many such ℓ congruence (12) reduces to

(13) p

(

mnrℓ
2 + 1

24

)

≡ χ(ℓ)

(

(−1)
m2

−m−2
2

ℓ

)

(−1)
m2

−m−2
2 r (mod m).

Hence for every sufficiently large such ℓ, the m values p
(

mnrℓ2+1
24

)

are distinct

and represent each residue class mod m.

To complete the proof, it suffices to notice that the number of such primes

ℓ < X, by Serre’s theorem again, is ≫ X/ logX. In view of (13), this immedi-

ately yields the
√
X/ logX estimate. The estimate when r = 0 follows easily

from Theorem 1.

Proof of Theorem 5. Since F (m,k; z) is in Sm2
−m−1
2

(Γ0(576m), χχk−1
m )m,

it follows that each F (m,k; z) lies in one of two finite-dimensional Fm-vector

spaces. The result now follows immediately from (3), Theorem 6, Proposition

7, and well-known upper bounds for the dimensions of spaces of cusp forms

(see [C-O]).

4. Examples

In this section we list the Ramanujan cycles for the generating functions

F (m,k; z) when 5 ≤ m ≤ 23. Although we have proven that each F (m,k; z) ∈
Sm2

−m−1
2

(Γ0(576m), χχk−1
m )m, in these examples it turns out that they all are

congruent mod m to forms of smaller weight.

Cases where m = 5, 7, and 11. In view of the Ramanujan congruences

mod 5, 7, and 11, it is immediate that for every positive integer k we have

F (5, k; z) ≡ 0 (mod 5),

F (7, k; z) ≡ 0 (mod 7),

F (11, k; z) ≡ 0 (mod 11).

Therefore, these Ramanujan cycles are degenerate.

Case where m = 13. By [Gr-O, Prop. 4] it is known that

∆7(z) | U(13) ≡ 11∆(z) (mod 13).

Therefore by (10) and Theorem 6 it turns out that

F (13, 1; z) ≡ 11q11 + 9q35 + · · · ≡ 11η11(24z) (mod 13).

Using a theorem of Sturm [St, Th. 1], one easily verifies with a finite compu-

tation that

F (13, 1; z) | T (592) ≡ 0 (mod 13).
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By the proof of Theorem 1, we find that every nonnegative integer n ≡ 1

(mod 24) that is coprime to 59 has the property that

p

(

13 · 593n+ 1

24

)

≡ 0 (mod 13).

Congruence (2) follows immediately.

Using Sturm’s theorem again, one readily verifies that

η11(24z) | U(13) ≡ 8η23(24z) (mod 13),

η23(24z) | U(13) ≡ 4η11(24z) (mod 13).

By Proposition 7 this implies that

F (13, 2; z) ≡ 10η23(24z) (mod 13),

and more generally it implies that for every nonnegative integer k

F (13, 2k + 1; z) ≡ 11 · 6kη11(24z) (mod 13),(14)

F (13, 2k + 2; z) ≡ 10 · 6kη23(24z) (mod 13).(15)

These two congruences appear in Ramanujan’s unpublished manuscript on

τ(n) and p(n), and their presence in large part inspired this entire work. From

(14) and (15) we obtain the following easy corollary.

Corollary 9. Define integers a(n) and b(n) by

∞
∑

n=0

a(n)qn :=
∞
∏

n=1

(1 − qn)11,

∞
∑

n=0

b(n)qn :=

∞
∏

n=1

(1 − qn)23.

If k and n are nonnegative integers, then

p

(

132k+1(24n + 11) + 1

24

)

≡ 11 · 6k · a(n) (mod 13),

p

(

132k+2(24n + 23) + 1

24

)

≡ 10 · 6k · b(n) (mod 13).

Case where m = 17. By [Gr-O, Prop. 4], it is known that

∆12(z) | U(17) ≡ 7E4(z)∆(z) (mod 17)

where E4(z) = 1 + 240
∑∞

n=1 σ3(n)qn is the usual weight 4 Eisenstein series.

Therefore by (10) it turns out that

F (17, 1; z) ≡ 7q7 + 16q31 + · · · ≡ 7η7(24z)E4(24z) (mod 17).
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Again using Sturm’s theorem one easily verifies that

η7(24z)E4(24z) | U(17) ≡ 7η23(24z)E4(24z) (mod 17),

η23(24z)E4(24z) | U(17) ≡ 13η7(24z)E4(24z) (mod 17).

By Proposition 7 this implies that for every nonnegative integer k

F (17, 2k + 1; z) ≡ 7 · 6kη7(24z)E4(24z) (mod 17),

F (17, 2k + 2; z) ≡ 15 · 6kη23(24z)E4(24z) (mod 17).

As an immediate corollary we obtain:

Corollary 10. Define integers c(n) and d(n) by

∞
∑

n=0

c(n)qn := E4(z) ·
∞
∏

n=1

(1 − qn)7,

∞
∑

n=0

d(n)qn := E4(z) ·
∞
∏

n=1

(1 − qn)23.

If k and n are nonnegative integers, then

p

(

172k+1(24n + 7) + 1

24

)

≡ 7 · 6k · c(n) (mod 17),

p

(

172k+2(24n + 23) + 1

24

)

≡ 15 · 6k · d(n) (mod 17).

Case where m = 19. Using [Gr-O, Prop. 4], and arguing as above it turns

out that for every nonnegative integer k

F (19, 2k + 1; z) ≡ 5 · 10kη5(24z)E6(24z) (mod 19),

F (19, 2k + 2; z) ≡ 11 · 10kη23(24z)E6(24z) (mod 19).

Here E6(z) = 1− 504
∑∞

n=1 σ5(n)qn is the usual weight 6 Eisenstein series. As

an immediate corollary we obtain:

Corollary 11. Define integers e(n) and f(n) by

∞
∑

n=0

e(n)qn := E6(z) ·
∞
∏

n=1

(1 − qn)5,

∞
∑

n=0

f(n)qn := E6(z) ·
∞
∏

n=1

(1 − qn)23.

If k and n are nonnegative integers, then

p

(

192k+1(24n + 5) + 1

24

)

≡ 5 · 10k · e(n) (mod 19),

p

(

192k+2(24n + 23) + 1

24

)

≡ 11 · 10k · f(n) (mod 19).
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Case where m = 23. Using [Gr-O, Prop. 4], and arguing as above we have

for every nonnegative integer k

F (23, 2k + 1; z) ≡ 5kη(24z)E4(24z)E6(24z) (mod 23),

F (23, 2k + 2; z) ≡ 5k+1η23(24z)E4(24z)E6(24z) (mod 23).

Corollary 12. Define integers g(n) and h(n) by

∞
∑

n=0

g(n)qn := E4(z)E6(z) ·
∞
∏

n=1

(1 − qn),

∞
∑

n=0

h(n)qn := E4(z)E6(z) ·
∞
∏

n=1

(1 − qn)23.

If k and n are nonnegative integers, then

p

(

232k+1(24n + 1) + 1

24

)

≡ 5k · g(n) (mod 23),

p

(

232k+2(24n + 23) + 1

24

)

≡ 5k+1 · h(n) (mod 23).
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[I] A. Ivić, private communication.
[K-Ol] I. Kiming and J. Olsson, Congruences like Ramanujan’s for powers of the partition

function, Arch. Math. (Basel) 59 (1992), 825–855.
[K] O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 (1959),

377–378.
[N1] M. Newman, Periodicity modulo m and divisibility properties of the partition

function, Trans. Amer. Math. Soc. 97 (1960), 225–236.
[N2] , Congruences for the coefficients of modular forms and some new con-

gruences for the partition function, Canad. J. Math. 9 (1957), 549–552.
[Ni-R-Sa] J.-L. Nicolas, I. Z. Ruzsa, and A. Sárközy, On the parity of additive represen-
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